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This paper supplements an earlier study (Singh 1974) of the steady case of ‘Entry 
flow in a curved pipe’. Here we consider an entrance profile of the form 

w = & @ ) / ( I  +6rcosa), 

which is physiologically more relevant for blood being pumped from the left ventricle 
into the ascending aorta. A boundary-layer analysis is applied to determine the 
effects of curvature and an adverse pressure gradient (associated with the primary 
flow) on the wall shear. The study shows how the negative wall shear and backflow 
near the wall develop during the decelerating phase of the cycle as the boundary 
layer grows. The analysis shows how the increasing effect of the secondary flow due 
to curvature draws off slower moving fluid azimuthally from the outer bend to the 
inner bend; this induces a cross-flow of faster moving fluid from the inner bend to the 
outer bend which results in a thinning of the boundary layer at  the outer bend and a 
thickening at  the inner bend. This implies an increased wall shear at  the outer bend 
compared with that at the inner bend as the flow develops further downstream; this 
is in contrast with the initial stages of the motion near the entrance where the higher 
wall shear occurs at the inner bend owing to the external flow and to geometric factors. 
The analysis shows that the displacement effect of the boundary layer on the core is 
not significant because the boundary layer remains thin, about one-tenth of the tube 
diameter. 

1. Introduction 
A study of the oscillatory flow of viscous fluid in a curved tube is a step towards the 

simulation of blood flow at curvature sites. For such flows an understanding of the 
distributions of velocities, shear stresses and pressure may help to provide some 
understanding of the genesis of certain arterial diseases. Curvature sites have been 
associated with the onset of atherosclerosis (Wolstraholme & Knight 1973), which is 
one of the principal causes of circulatory failure. Lesions are distributed non-uniformly 
around the surface of arteries, being more commonly found near bifurcations, on the 
inner walls of curves, and in larger arteries. The regions where lesions tend to develop 
are closely correlated both with areas of the wall in which the endothelial cells are 
found experimentally to have a relatively low permeability to large molecules such as 
lipoproteins, which are known to be implicated in the generation of the lesions, and 
with areas which would be expected to experience a relatively low wall shear (see 
Lighthill 1975). Detailed patterns of wall stress associated with blood flow may play 
a causative role in atherogenesis. The secondary flows induced by the centrifugal 
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effects developed at curvature sites will result in asymmetrical wall stresses with a 
high-shear region and a low-pressure region. Texon postulates a suction effect in the 
low-pressure region as a cause for the onset of incipient atheroma (Chandran et al. 
1974). Fry has demonstrated that extremely high shearing stresses are able to produce 
actual mechanical damage to the endothelial lining of the arterial wall which can 
foster the development of atherogenesis. On the other hand Caro, Fitz-Gerald & 
Schroter (1971) consider that the fluid mechanics of blood flow has a controlling and 
inhibiting effect, rather than a causative one, in atherogenesis. They correlate the 
observed natural cases of incipient atheroma with a low-shear region and suggest a 
shear-dependent mass-transfer mechanism in explaining this phenomena. It is likely 
that all the above-mentioned factors (including exceptionally high or exceptionally 
IOW stress) may be contributory. In  m y  case, it is essential to know the distributions 
of velocity, pressure and shear stresses so that correlations with further controlled 
experiments could help in providing more definitive explanations for this common 
fatal disease of modern society. 

This paper studies the problem with particular reference to the ascending aorta. 
This is an elastic tube that stems from the left ventricle of the heart, curving in a 
complicated three-dimensional way and giving off branches to the head and upper 
limbs. The heart generates a periodic pressure gradient which is transmitted as a 
travelling wave whose velocity is an order of magnitude greater than the fluid velocity. 
In  our analysis, the ascending aorta is modelled as a uniform, curved and rigid tube. 
We ignore the fact that the aorta is twisted and although the branches from the arch 
of the aorta will clearly have a significant influence on the flow near their entrances, 
their effect on the flow nearer to the heart is likely to  be less pronounced (Nerem, 
Seed & Wood 1972). We also ignore the wall distensibility, which is important in 
determining how the pulse wave propagates, which in turn determines the local pressure 
gradient [proportional to 0 ; see (i)] as a function of time. However, the flow response 
to  that gradient is approximately the same as in a rigid tube, both because the wave 
length is large compared with the length of the ascending aorta, and because the 
wave speed is large compared with the fluid speed. (The typical variations of arterial 
diameter as a pulse passes are only about 2 yo and the pulse wave velocity is at least 
five times the maximum blood velocity, so that neglecting arterial wall elasticity 
and thereby making the effect of pressure changes propagate infinitely fast would not 
entail significant errors in the analysis (Lighthill 1975). A similar argument shows that 
the taper of the aorta is also unimportant.) 

The two factors that now distinguish the problem from that of a classical entrance 
length are the curvature of the tube, and the fluctuations in the flow rate. We assume 
blood to be incompressible, homogeneous in composition and rheologically Newtonian 
with a constant viscosity. In  the applications to blood flow, we are, therefore, assuming 
that the non-Newtonian and non-homogeneous properties of blood (which, after all, 
is a concentrated suspension of flexible red cells) can be ignored. This is justified so long 
as the shear rates in the fluid do not fall below 100S-l, and so long as the length 
scales of the flow are large compared with the cell diameter and spacing, which are of 
the order of 10,um (Whitmore 1968, chap. 6). The flow is considered laminar, although 
non-laminar disturbed Aows have been observed in larger arteries where highly 
pulsatile flows with relatively high peak velocities occur. For instance, McDonald 
(1952) reports that, in the rabbit aorta, the laminar flow which exists over the great 
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portion of the pulse cycle breaks down and becomes turbulent over a portion of the 
pulse cycle about 50 milliseconds in duration, when the velocity is at its peak (see also 
Seed &Wood 1971; Nerem & Seed 1972; Hall &Parker 1976). The temporal and spatial 
behaviour of the fluid velocity and pressure is assumed to be known at the tube 
entrance and is taken to be periodic in time. For the aorta the flow is injected perjodic- 
ally through the aortic valve by the contraction of the left ventricle, and it might be 
expected that the entrance flow is somewhat jet-like and hence rather uniform across 
the vessel, although some radial and azimuthal dependence is probably also present 
(see Bellhouse & Talbot 1969). It is further assumed that no backflow occurs as the 
aortic valve closes. Physiologically, however, backflow occurs over a small portion of 
the pulse cycle as the diastolic phase starts, presumably because of arterial wall 
distensibility (McDonald 1960; Nerem et al. 1972; Pedley 1976; see also figure 2). 
Finally, we neglect all external body forces and the system is assumed to be under- 
going a general, steady-state periodic motion of constant period (of course, time- 
independent components may also be present), no transients being involved. 

Although the mathematical model neglects certain physical effects which exist in 
the vascular system, it still retains the important characteristics of the blood flow 
near the aortic valve, the neglected effects being of secondary importance. It might 
also be mentioned that although the motivation for this study has come from physio- 
logical considerations, the model could also conceivably be applied to other situations, 
such as fluidic devices, hydraulic control lines, etc. 

Several studies have recently considered entrance effects on the fluid motion in a 
curved pipe (see, for example, Olson 1971 for an experimental study; Patankar, 
Pratap & Spalding 1974 for a numerical study; Singh 1974 and Yao & Berger 1975 
for analytical studies). However, all of these studies are confined to steady-state 
situations. Here we extend Singh's (1 974) analysis to the physiologically interesting 
case of pulsatile entry flow and discuss the effects of curvature and adverse pressure 
gradient (associated with the primary flow) on the wall shear. The analysis shows how 
the negative wall shear and backflow near the wall develop during the decelerating 
phase of the cycle as the boundary layer grows. The study shows how the increasing 
effect of the secondary flow due to the curvature draws off slower moving fluid azi- 
muthally from the outer bend to the inner and induces a cross-flow of faster moving 
fluid from the inner bend to the outer which results in a thinning of the boundary 
layer at the outer bend and a thickening at the inner bend. This implies a higher wall 
shear at the outer bend in comparison with that at  the inner bend as the flow develops 
further downstream. This is in contrast to the initial stages of the motion near the 
entrance, where the higher wall shear occurs at  the inner bend because of the external 
flow and geometric factors. The analysis shows that the displacement effect of the 
boundary layer on the core is not significant because the boundary layer remains thin. 

2. Formulation of the problem 
Figure 1 shows the system of toroidal co-ordinates (r', ct, 8) with which we study 

the motion of fluid through a pipe which has a circular cross-section and which is 
coiled in the form of a circle. The axis of the circle into which the pipe is coiled is OZ 
and C is the centre of the cross-section of the pipe in a plane that makes an angle 8 
with the fixed axial plane. OC is of length L, which is the radius of curvature of the 
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8 = 0  
\ 

FIGURE 1. Geometrical configuration of the problem in toroidal co-ordinates (T', a, 8) .  

coiled tube. The plane passing through 0 and perpendicular to 02 will be called the 
' central plane ' of the pipe and the circle traced out by C the pipe's 'central line ', r' 
denotes the distance C P  and a is the angle which C P  makes with the line OC produced. 
Let (u', v', w') denote the corresponding velocity components in the ( r ' ,  a, 6 )  directions 
st time t'. 

Entry and boundary conditions 
No precise data are available for the blood velocity a t  the aortic entrance. We assume 
here that the dynamic pressure across the cross-section at  the entrance to the bend 
is constant, which corresponds to the curved pipe taking the fluid from a reservoir 
a t  constant pressure. In  this case, the injection velocity is given by 

u' = v' = 0, w' = LwoQ(wt')/(L+r'cosa). (1) 

Since the backflow at the entrance is not considered, we impose the important 
restriction 

Q 2 0. (2) 

Although the analysis is developed for general Q satisfying ( 2 ) ,  detailed calculations 
are done for the following cases: 

Q = 1+0*8sint for 0 < t < 2n, (3a)  

and 

The graph of the proposed models of Q may be compared with the typical velocity 
near the aortic entrance in a dog (McDonald 1960) (see figure 2). The boundary 
conditions are the usual no-slip and continuity of normal component conditions : 

u' = v' = w' = 0 at T' =a. (4) 
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FIGURE 2. (a) Typical blood velocity near the aortic entrance in a dog. (Note that this velocity 
is an average over the cross-section of the artery and is proportional to the instantaneous volume 
flux.) From McDonald (1960). ( b ) ,  (c) Entrance profiles for which computations have been carried 
out : (b )  profile (3a)  ; (c) profile (3  b) . 

Non-dimensional equations of motion 

Near the entrance, it is natural to  refer the velocity to  the characteristic entrance 
velocity wo, the co-ordinates r' and s' = LO to  a, the pressure to  pwg and time to l/w, 
where p is the density of the fluid. The following physiological data will be taken into 
account for estimating the orders of magnitude of the parameters arising in the 
dimensionless equations of motion: radius a of the ascending aorta = 1.15 - 2-18 cm 
(for man) or 0.50cm (for dogs; see McDonald 1960); kinematic viscosity of blood 
Y = 0.038 cgs units at 37 "C (for man); the duration of each systole (for man) is approxi- 
mately 0.3 s, during which about 80ml of blood is pumped from the left ventricle 
into the ascending aorta. The frequency of the systolic cycle is approximately 70 min-l; 
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w is 277 times this frequency. Accordingly, the curvature ratio 6’ = a / L  = O(lO-l), the 
Reynolds number Re = aV,/v = O( lo3), and the frequency parameter 

E = aw/Fo = O(IO-1).  

u,. + (1 + 2rScos a) u/rR(r, a) + vJr - vSsin a / R ( r ,  a)  + w,/R(r, a) = 0, 

The equations of motion are 

( 5 )  

cut + uu,. + vua/r + wu,/R(r, a )  - v2/r  - w2S cos a/R(r, a) 
= -p,. - (Re)-l [(r-l a/aa - Ssin aR-1) (v, +v/r  - ua/r) - us3/R2(r, a)  

+ w,,/B(r, a )  + ws S cos a/R2(r ,  a)],  (6) 

cut + uv, + vva/r + wv,/R(r, a )  + uv/r + w2Ssin a / R ( r ,  a)  
= -pa/r + (Re)-l [v,,/R2(r, a )  - wSa/rR(r, a)  

+ w, Ssin a/B2(r, a) + ( a / &  + S cos,a/R(r, a)) (v,. + v/r  - uJr ) ] ,  (7) 

ewt -t- uw, + vwa/r + ww,/R(r, a )  + uw S cos a / R ( r ,  a )  - vwSsin a / R ( r ,  a)  
= -ps/R(r, a )  + (Be)-l [ (a /& + r-l) (w, + wScos a / R  - u,/R) 

+ wa,/r2 - r-la(v,R-l)/aa - r-la(wSsin aR-l)/aa], (8) 

where the unprimed variables are in dimensionless form, the parameters E ,  S and 
Re are defined above, and R(r ,  a )  = 1 + rS cos a. 

The corresponding entry and boundary conditions in the non-dimensional form 
become 

and 
u = v = 0,  w = Q(t) /R(r ,a)  at s = 0, 

u = v = w = O  at r = l .  

It may be noted that, in the absence of viscosity, the exact solution of the above 
equations satisfying the entry conditions (9 a)  is 

u = v = 0,  w = Q(t) /R(r ,  a ) ,  p = - +Q2/R2(r, a )  -a(?, (10) 

where (? = dQ/dt. 

3. Solution 
Since the Reynolds number Re is 0(103), Singh’s (1974) analysis for the steady 

entry problem is applicable here. As the fluid is injected into the pipe, the central core 
of the fluid will not be influenced by viscosity, whose effects will be confined to a thin 
layer near the wall of the tube. Therefore, the flow can be divided into two regions: 
(i) an inviscid core in which the centrifugal force due to the curved motion of the 
main body of the fluid along the tube is balanced by the pressure gradient directed 
towards the centre of curvature and in which the instantaneous axial fluid acceleration 
is sustained by the streamwise pressure gradient, and (ii) a thin boundary layer in 
which the viscous forces are balanced by the inertia forces. As in the classical boundary 
layer, pressure will be transmitted to the flow in the boundary layer by the external 
flow, which implies that the azimuthal pressure gradient, which is of second order 
during the initial stages of motion, will induce a transverse flow in the boundary 
layer from the outside of the bend towards the inside. The effect of the growing bound- 
ary layer on the flow in the core will be to accelerate the motion due to the displacement 
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effect of the boundary layer, and the effect of the second-order transverse flow in 
the boundary layer will be to induce a cross-flow from the inside of the bend towards 
the outside to satisfy the mass conservation principle. The secondary flow due to 
the curvature effects in the region close to the entry can, therefore, be obtained by 
perturbing the solution for developing flow in a straight tube. 

First-order solution in the inviscid core 
The solution in the core is just the undisturbed entry flow 

u = v = 0, w = Q(t) /R(r ,  a), p = - 4Q2/R2 -esQ + f ( t ) ,  ( 1 1 )  

where f ( t )  is the left ventricular pressure (determined by the total impedance of the 
cardiovascular system), and R = 1 + rS cos a as before. 

First-order boundary layer 
As in the flat-plate case (Pedley 1976), there will be an approximately quasi-steady 
boundary layer in which the convective inertia forces are balanced by the viscous 
forces and the unsteady inertia terms are first-order small quantities. Accordingly, 
we introduce 

where p2 = ./avo Q and /3-2 equals the instantaneous Reynolds number of the flow. 

we obtain 

r= l - /37 ,  u=PQiZ, v = Q C ,  w = Q G ,  p = Q ' f j ,  (12)  

Substituting these magnified variables into (5)-( 8) and retaining the leading terms, 

( 1 3 4  -G,, + ija - ijSsina/R(l, a) + GJR(1,  a) = 0, 

R) = 0, (13b) 

+ Gijs/R( 1 ,  a) + G2Ssin a/R( 1 ,  a) = -pa  + f in, , ,  ( 1 3 ~ )  

- @GSsin a/R( 1 ,  a)  + GGs/R( 1, a) = - @JR( 1, a) + G,,,,. ( 1 3 4  
The appropriate boundary conditions are 

C = i j = G = 0  at 7 = 0 ,  (14a) 

@-to, G - + l / R ( i , a )  as ~ - + c o ,  ( l a b )  

and the condition of' matching with the undisturbed inviscid flow yields 

which also holds a t  s = 0. In  ( 1  3) and (14) we have obviously used R( 1,  a) = 1 + Gcosa. 
From (13b) ,  it follows that the pressure is impressed on the boundary layer by the 
external flow and hence 

(15) 

where the last term does not contribute to  the pressure gradient and hence will not be 
considered further. Since the parameters e and 6 are O(&), it would be convenient to 
expand C, etc. in the form 

jj = - 1R-2 2 ( 1 9 0 1 )  - eS&/Q2+f ( t ) / Q 2 ,  

C ( t ,  7, a, $ 7  p, 6, .) = CIJt, 7, a, s) + S.ii,(t, 7, a, 8) + e.ii,(t, 7, a, 8) 
+ O(S2, €8, e2) + 0(/3), (16) 

etc. 
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O( 1) equations, matching and boundary conditions 

Making use of ( 1  5 )  and ( 1  6) in ( 13) and ( 1  4 )  and collecting O( 1 ) terms, we obtain 

-Go, + Go, + Gos = 0, ( 1 7 4  

- 4, fi,, + Go Go, + Go GOS = Go,,, (17b)  

- 4, Go, + Go Go, + 8, GOS = Go,,, (17c)  

4, = fi, = 8, = 0 at 7 = 0, (18a) 

Go)O3O, G o + l  as 7300. (18b) 

Go E 0, (19 )  

6 = (24-*7,  (20 )  

with the corresponding boundary and matching conditions 

It follows that 

and Go, 8, satisfy the Blasius equation and so we introduce the similarity variable 

and the stream function Go such that 

4, = $OS’ $0 = $0,. 

We now introduce the Blasiusfunctionf,([)given by 6, = (2s)4f0([) ,  in terms of which 

4, = (2s)-* [fo - &I, 6, = f h, 
andf, satisfies the Blasius equation 

f: +f& = 0, with fo(0) = fh(0) = 0 and fh(co) = 1 ,  ( 22 )  

whose solution is well known. 

O(6) equations, matching and boundary conditions 

These are obtained from (13 )  and (14 )  by using (15) and (16 )  and collecting O(6) terms: 

- Glr + B,, + G18- GOs cos a = 0, 

- 4,fiI7 + Go Gls + Gi sin a = sin a + Glq8, 

- fi, Glq - fi, Go, + 8, Gls + G1 GOs - Go 8, cos a = GI,,, 

( 2 3 a )  

(23 b )  

(23c)  

with the corresponding boundary and matching conditions 

( 2 4 a )  

Gl+O, G,+-cosa as r]-+oo. (24b)  

” , -  u, = v1 = GI = 0 at 7 = 0, 

These equations are the same as those whose solutjon was obtained by Singh (1974).  
We obtain, therefore, the following result: 

( 2 5 4  

fil = sg’(6)sina, (25b)  

El = cosa [fhC6) +s”f;,(C)l, ( 2 5 4  

41 = Ps)-* C O S a  rfl(6) - &(6) +s2(29(6) + 5f&) - CYX))l, 
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where fl, f2 and g satisfy the system of equations 

f i  = - [ f o  + Uhl, 

g”’+f0g’’-2f;g’ = 2(&2- l), 

f: +f& - 4f;f; +f;(2g 4- Sf2) = 0, 

with the boundary conditions 

f2 (0 )  =f;,(O) = 0, fL(a3)  = 0, g(0) = g’(0) = 0, g’(m) = 0. (27) 

O( c )  equations, matching and boundary conditions 
As in the preceding case, the following equations are obtained from ( 1 3 )  by collecting 
O ( c )  terms: 

-c27+G8a+Ga = 0, ( 2 8 a )  

- Go G2? + Go Gzs = G2,11, 

-~0+~+-G0 , -c0G2, - . i i 2G0 ,+G0G2s+G2G0s Q - rQ = -@+GZ7,, Q 
Q2 Q 2Q2 

and the corresponding boundary and matching conditions are 

We find that 
G , = E 2 = G 2 = 0  at q = O  and G2,G2+0 as ~l- fm.  (29 )  

(30 )  G2 = 0. 

Introducing the similarity variable 6, it is possible to express .ii2 and G2 in the following 
manner: 

G2 = ( $ / Q 2 )  (2814 [#f (5) - &3’(C)I, 5 2  = ( & / Q 2 )  sf‘(5L (31 )  

where f satides the equation 

f”’ + f o f ”  - 2fhf‘ + 3 f i  f = 2[fA + gy;fl; - 11, ( 3 2 )  

with the boundary conditions 

f ( 0 )  = f ’ (0)  = f’(a3) = 0, 

whose numerical solution can be obtained in a straightforward manner. 
The first-order boundary-layer solution can now be written in the form 

w = Q[fW + Scos a { f X )  +A(<) + s2f;(6)} + c(&/Q2) sf’K)l, ( 3 3 4  

where the first term is the quasi-steady Blasius profile for a straight tube, the middle 
term represents the curvature effect and the last term is due to the entrance velocity 
fluctuations. Similarly, 

w = Q(6sinasg’(fl)], (33b)  

+ 4 Q / Q 2 ) 4 3 f ( S )  - U’CS))], ( 3 3 ~ )  

which include both the curvature and the entrance-velocity-fluctuation effects on 
the fluid motion near the pipe wall. 

PQ 
u = (zs)a [fo(S) - C f X )  + ~cos~{f l (C)  - SjiK) + s2(2g(5) + %(S) - CfX))l 
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The curvature effect [see, for example, (33 a)]  is a small quantity of first order initially, 
but becomes larger as the flow develops further downstream. In fact, the above 
solution will no longer be valid for s = 0(6-*), as in the case of the steady-state analysis 
(Singh 1974). 

Although the instantaneous Reynolds number varies in this study from small 
values to higher ones ( N lo3), i t  is the Reynolds number with respect to the mean speed 
which is important for the boundary-layer analysis and its value for the flow in the 
ascending aorta is quite large ( N lo3). However, it is the entrance-velocity fluctuation 
which has the most important bearing on our analysis, because the perturbation 
series ( 16) in powers of E is no longer valid when 

€s&/Q2 = O(l ) ,  (34) 

which can be seen in the velocity fluctuation term in (33a)  and which arises from the 
pressure gradient [see (15)] required to sustain the primary undisturbed flow. Although 
the frequency parameter E is small ( N A) in our study, the analysis may break down 
even close to the entrance at the instant when the instantaneous velocity Q is very 
small and the acceleration & is not correspondingly small, something which is likely 
to happen during the initial stages of the accelerating phase and concluding stages 
of the deceleration phase of the systole and throughout the diastolic phase (see Pedley 
1976). In  such a situation the flow will be approximately represented by a diffusive 
balance between the unsteady inertia terms and the viscous terms. Vorticity will 
continue to diffuse out into the fluid until convection once more becomes important. 
From the expression for the pressure in (ll),  it can be inferred that our analysis is 
valid so long as 

(see also Pedley 1976).t In  a subsequent study, it is proposed to present an analysis 
valid for the entire cycle as the blood is pumped from the left ventricle into the aorta. 

The axial skin friction can now be written down from the above solution and is 

csl&l/Q2 5 ii (35) 

0-4696 + 8cos a(0.256292 - 0.9392) + 8 

Here, the first term is the skin frinction for a straight tube with no velocity fluctuations 
at the entrance; their effects are represented by the last term. The middle term is the 
contribution from curvature. Both these effects increase as the flow develops further 

t In fact, for the profile (3a) ,  Q = l+O-Ssint, taking E = -+<, we find that E [ Q ( / Q a  N 0.2 and 
so the boundary-layer analysis is valid throughout the cycle so long as 8 5 0.5/0.2 = 2.5. On 
the other hand, for (3 b) , 

0, 277 < t < 2n, 

the boundary-layer analysis is npt tenable even close to the entrance, from time ( 0 , ~ )  and 
( 2 ~ - 7 , 2 7 7 )  where 7 is given by €I&(7)1/Q2 = 0.5. In this case, initially there will be set up on the 
tube wall a diffusive (Rayleigh) layer. A quasi-steady boundary layer will thereafter be initiated 
at  the entrance and will propagate downstream which will persist until after the time of peak 
velocity when a new diffusive layer takes over which persists until the end of the cycle (t = 2 ~ )  
(see Pedley 1976). 
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downstream. In  the midde term, the first expression is the effect of the secondary 
velocity and the second expression is the effect of reduced (increased) external flow 
and the longer (shorter) wall length traversed by the fluid at the outside (inside) of 
the bend. Since the effect of the secondary velocity on the skin friction is initially 
small, the fluid experiences less resistance in the outer part of the bend in comparison 
with that it would experience in a straight tube owing to the reduced external flow 
and the longer wall length; similarly it experiences increased resistance initially at 
the inside of the bend owing to the increased external flow and shorter wall length. 
The boundary layer of retarded fluid grows all round the tube, however the effect 
of the secondary flow, which increases with downstream distance, is to thin the 
boundary layer at the outside of the bend because retarded fluid is drawn off azi- 
muthally, which results in reduced displacement and increased skin friction. On the 
other hand, the situation will be reversed for the inner side of the bend because the 
secondary flow brings in additional retarded fluid and thickens the boundary layer, 
which results in increased displacement and consequently a decrease in skin friction. 
The last term represents the entrance-velocity-fluctuation effect on the skin friction. 
It increases the skin friction during the accelerating phase through the accelerating 
pressure gradient and decreases it during the decelerating phase. Since the effect of 
velocity fluctuations on the skin friction increases as the flow develops further down- 
stream, a situation arises in which negative shear stress exists which results in back- 
flow - a phenomenon observed experimentally in arterial flows. 

The azimuthal skin friction is given by 

T, = - ( p p r ;  Q3/2as)a asin esg"(O), where g"(0) = 1.536. (37) 

There is no negative azimuthal shear stress because there is no adverse azimuthal 
pressure gradient in the primary flow. Accordingly, there will be no flow reversal so 
far as the azimuthal component of the velocity is concerned. The azimuthal wall 
stress increases as the fluid flows further downstream. 

Flow due to displacement 

A careful examination of (33 c) reveals that, except for the entrance-velocity- fluctuation 
term, the displacement effect on the core velocity can be derived from Singh's (1 974) 
steady-case analysis by means of a suitable transformation as was done in the case 
of the boundary-layer analysis and so is not repeated here. We now obtain the con- 
tribution of the velocity-fluctuation term to the core velocity due to the displacement 
effect of the boundary layer. 

From (33c) we find that as C-fm, the term corresponding to the entrance-velocity- 
fluctuation effect is 

where p5 = lim f = 0.726964. 
c= m 

(38) 

(39) 

This would induce O(Pe) terms in the core velocity. As in the steady case (Singh 1974), 
we assume the following expansions for the core velocity : 

(i) u(r,  a, s, t,P, 6, e) = /3[QMS) + eQQ-8 V ( r ,  a, s) + ...I, ( 4 0 4  



+pl(dr211(ar) + 5a-*rIo(ar))]] , (41 a )  

where 

~ ( a )  = 3a-%(2P2 + 5 A )  Il(a) + 2 d P 1  Io(a) + 4a-*(rB1 +A) U a )  + 2P1 dIo(a). 

Substituting (40) in (5)-(8), collecting the O(pe) terms and using the matching 
condition from (38) gives 

and the entry condition 

We find that 

and U, W and P satisfy the following equations: 

U = (+5)*3& at r = 1 (42) 

U = V = W = O  at s=O. (43) 

v = o  (44) 

u,+ U/r+W,  = 0, (45a) 

where ul0 and wl0 are obtained from u ( S )  and dS) by putting 6 = 0 and satisfying the 
continuity equation (45a) (see Singh 1974). 

Elimination of U and W from (47) leads to 

P, + r-'P, + p, = 0. (46) 

The matching condition (42) yields 
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FIGURE 3. Axial skin friction 7,, us. s for different values of 
a for the profile (3a) .  t = :7r, e = 0.2. 

where 

and hence 

The entry condition (43) implies 

p1 = 1.21678 

p 6  = 0.9641. 

P = O  a t  s = O .  

Equation (46) with boundary conditions (47) and (49) can be solved by applying 
Fourier sine transformation. We accordingly obtain the following solution: 
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1 .o 

0.8 

L; 0.6 

0.4 

0.2 

[pl sin us - p6 cos us] du. 

4. Results and discussion 
Boundary layer 

We are now in a position to discuss the effects of various parameters on the flow fields. 

Wall shear stress 
Figure 3 shows the relation between 7, and s at t = 2~ (decelerating phase of the 
systole) with 8 = 0.2 and Q = 1 + 0.8 sin t .  Since, initially, the secondary-velocity and 
entrance-velocity-fluctuation effects are small, the diagram shows higher wall shear 
at the inner bend compared with that at the outer bend near the entrance owing to the 
larger external flow and the shorter wall length traversed by the fluid at  the inside 
of the bend. Accordingly, as the flow develops, negative wall shear occurs first a t  the 
outer bend (at t = @r) owing to the adverse pressure gradient (proportional to &), but 
soon the secondary velocity grows, resulting in the reversal of the wall shear distribu- 
tion in that, further downstream, larger wall shear occurs at the outer bend in com- 
parison with the inner bend as shown in figure 3. The wall shear decreases as s increases 
because the quasi-steady boundary layer becomes thicker as the flow develops. 

Figure 4 represents the effect of the frequency parameter a on 7, for the profile 
( 3 b ) .  At time t = 0-3,  the pressure gradient term &/Q2 is comparatively large and so 
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FJGURE 5. Axial skin friction r,, us. t at the outer bend for E = 0.1 
and 0.2 for the profile ( 3 b ) .  s = 1.5, a = 0, 6 = 0.167. 

an increase in e significantly increases the wall shear stress in figure 4 (a). On the other 
hand, in figure 4 ( h ) ,  &/Qz is comparatively small at t = 1.5 and so the value of wall 
shear stress is not significantly altered by changing the value of E from 0.1 to 0.2. 

Further, in figure 4 (a), the wall stress increases with s in contrast to figure 4 ( b )  in 
which it decreases as s increases owing to the boundary layer becoming thicker. This 
peculiar behaviour in figure 4 ( a )  is due to the fact that the pressure gradient term 
in the wall stress is the dominating term which increases as s increases (refer to (34) 
and the corresponding discussion). 

Similar influence of the frequency parameter on the wall stress is reflected by 
figure 5, which shows T,,~ us. t at s = 1-5 for E = 0.1 and 0.2 for the entrance profile 
Q given by ( 3 b ) .  It shows that the shear stress reverses its sign although the outer 
flow does not. This is because the slower moving fluid near the wall responds more 
rapidly to the applied adverse pressure gradient (associated with the rapid decelera- 
tion of the core flow as the aortic valve closes) than does the free stream. The same 
reason applies to the slight phase lead of the peak in T,, over that of the free-stream 
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FIUURE 6. Axial skin friction T,, vs. t at the inner and outer bends (and 
also for the straight tube) for the profile ( 3 b ) .  s = 1-5, E = 0.2. 

peak velocity reflected by the graphs in figure 6 which represent the variation of 
r,, with t at the inner and outer bends (and also for the straight tube) for the entrance 
profile given by ( 3 b )  at s = 1.5 when the secondary flow as well as the entrance- 
velocity fluctuation have significant effects on the wall stress. The larger wall stress 
at the outer bend compared with its value at the inner bend has already been accounted 
for in the discussions of the graphs in figure 3. The magnitude of the difference in wall 
shear at the outer and inner bends depends on (i) the effect of the secondary flow and 
(ii) the magnitude of the entry flow which is at the peak near t = 377 in figure 6 and 
near t = in in figure 7 (a). 
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FIGURE 7. Variation of streamwise velocity near the wall ( 5  = 0.2) and the axial skin friction 
with time at the inner and outer bends for the pofile (3a) .  s = 1.2, E = 0.2. 

Streamwise velocity 

Here, the first term on the right-hand side is the quasi-steady Blasius boundary-layer 
term and the second term represents the curvature effect; the first two terms inside 
the curly brackets represent the variation of the Blasius boundary layer with a owing, 
respectively, to (i) dependence on a of the flow velocity just outside the boundary 
layer and (ii) dependence on a of the distance traversed along the curved wall for 
given s, and the third term represents the development of the secondary flow. It 
shows how the curvature effect, which is initially of second order, grows as the fluid 
flows further downstream. The last term is the effect of entrance-velocity fluctuations, 
which increases as the flow develops further downstream. 
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FIGURE 8. Streamwise velocity w V8. c for different values of 8 

for profile (34 (straight-tube case). t = fm, a = &m. 

Figure 7 ( b )  shows how the streamwise velocity changes with t for f$ = 1 + 0.8 sin t 
a t  s = 1.2 when the secondary-velocity and the entrance-velocity-fluctuation effects 
no longer remain small. The graphs show that the streamwise velocity is larger near 
the inner bend compared with its value near the outer bend. This implies that the 
effects of the external flow and of geometrical factors still dominate the growing 
effect of the secondary flow which draws off azimuthally the slower moving fluid 
particles in the boundary layer from the outside of the bend towards the inside and 
takes faster moving fluid particles from the inside to the outside of the bend. The 
difference in magnitude of their values (i.e. of w) is maximum when the entry velocity 
has reached its peak (i.e. near t = tn). Further, the graphs indicate that although 
there is no flow reversal of the free stream, backflow of the fluid particles near the 
outer bend in the boundary layer takes place during a part of the decelerating phase, 
whereas near the inner bend no flow reversal takes place at this stage. This can be 
accounted for in the same way as we discussed the negative wall shear stress in the 
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FIGURE 9. Streamwise velocity w 2)s. 5 for the profile (3a) for different values of 8 and t .  

preceding paragraphs. The slower moving fluid near the outer bend responds more 
readily to the applied adverse pressure gradient than does the faster moving fluid 
near the inner bend. As the effects of secondary flow and entrance-velocity fluctuation 
increase further downstream, flow reversal (during a part of the decelerating phase) 
near the inner bend can also be expected. The slight phase lead of the streamwise 
velocity in the boundary layer over that of the free-stream velocity can be similarly 
accounted for. 

Figure 8 represents the variation of w in the boundary layer (for the straight-tube 
case) at t = in (which is the time for Q = 1 + 0.8 sin t when the decelerating phase has 
fairly strong influence on the flow) for various values of s. It shows how the backflow 
develops near the wall as the effect of adverse pressure gradient increases further 
downstream. 
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FIGURE 10. Streamwise velocity w ws. 5 for the profile ( 3 6 ) .  

Figure 9 represents the variation of streamwise velocity in the boundary layer for 
Q = 1 + 0.8 sin t near the inner and outer bends a t  two different phases of the cycle 
( t  = in and &r) for s = 0-4 and 2.4. Initially (see the graphs at s = 0.4), the profiles 
are steeper near the inner bend in comparison to the outer bend owing to (i) the 
influence of the external flow and (ii) the shorter wall length described by the fluid 
particles near the inner bend. As the flow develops, the effect of the secondary flow 
increases, which draws off the retarded fluid particles azimuthally at  the outer bend 
and induces a cross-flow from the inner bend to the outer bend which results in the 
thinning of the boundary layer at the outer bend and its thickening at  the inner bend. 
This is reflected by the profiles: near the inner bend, the graph is steeper at s = 0.4 in 
comparison with s = 2.4 owing to thickening of the boundary layer further downstream. 
On the other hand, the situation is reversed near the outer bend (during the acceler- 
ating phase) owing to the thinning of the boundary layer. As pointed out, initially the 
curves are steeper near the inner bend, the situation reverses during the accelerating 
phase as the flow develops further downstream owing to the increasing effect of the 
secondary flow in that the curve is steeper at the outer bend (compare the graphs 
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FIGURE 11.  Limiting streamlines at various instants of cycle for the profile (3a) .  

at s = 2.4 for the accelerating phase). A similar situation is reflected by the graphs 
for the decelerating phase except that the backflow occurs near the wall as the flow 
develops owing to the increasing effect of the adverse pressure gradient. Notice that 
the slower moving fluid near the inner bend responds more readily to the adverse 
pressure gradient than the faster moving fluid near the outer bend (compare the 
graphs at s = 2.4 and t = in). 

A similar situation is reflected by the graphs of w us. < (see figure 10) for the 
profile (36). At t = 1.2 (see graphs (i) and (ii)), when the entrance velocity is almost 
at its peak, the graph is steeper at s = 2.5 than at  s = 0-1 near the outer bend owing 
to the effect of secondary velocity. At such an instant the entrance-velocity-fluctuation 
effect would be very small and so we shall not expect much difference in the graphs 
for the values of the frequency parameter E = 0.1 and 0.2 (the graph for E: = 0.1 is 
not shown). During the decelerating phase (t  = 1.8 when the effect of the velocity 
fluctuation would be almost maximum), the velocity does not change much with a 
(see graphs (iii) and (iv)) near the entrance because the effect of secondary flow is 
comparatively smaller a t  the initial stages of flow development and the external flow 
is also small at this instant. Graphs (v) and (vi) illustrate the influence of the adverse 
pressure gradient on the flow, which accounts for the backflow near the wall. For such 
a situation, clearly, the value of the frequency parameter would play a significant 
role as can be seen by comparing (v) and (vi). 

Limiting streamlines 
The equation for the limiting streamlines at  the wall can be written as 

dalds = lim vIw = lim vr/wr = T , ~ / T , , , ~ .  
r-1 r-1 

Therefore 

da/ds = ss;nasg”(O)/[f;[(O)+scosa[f~(O) +f ’ ; (0)+s2f~(0) ]  +e(&/Q2)sf”(0)] .  

These streamlines are plotted in figure 11 .  Along the inner and outer bends, there is 
no azimuthal pull and since the azimuthal velocity is also zero, the streamlines are 
straight there as in the steady case (Singh 1974). At any other point on the wall, the 
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FIGURE 12. Graph off, f' and f" vs. 6 (effect of entrace 
velocity fluctuations in the boundary layer.) 
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FIQURE 13, Streamwise velocity w vs. t at the centre-line 
for s = 0.4 and 2.4 for the profile (3  a). 

streamlines tend to move towards the inner bend because of the azimuthal pull in that 
direction. The rapid variation of these limiting streamlines a t  various instants of the 
cycle is depicted in figure 11 ; it depends, of course, on the relative magnitude of 7, 

and 7,. As the external flow decelerates, the streamwise wall shear tends to decrease 
until it vanishes as the flow develops with the result that the limiting streamlines 
would converge a t  this point (provided it is at  the inner or outer bend where 7,, = 0 ) ,  
as is shown in the case of streamline x at the time t = sm. 

Figure 12 ahows how the function f and its derivatives vary with 6. These functions 
essentially represent the effect of the entrance-velocity fluctuation on the flow fields 
in the boundary layer. The function f', which represents this effect on w, sharply 
increases near the wall and then decays to zero. Similarly f" essentially represents the 
vorticity generated in the boundary layer owing to the entrance-velocity fluctuation 
and it is maximum at the wall and then falls rapidly to negative values and thereafter 
decays as the edge of the boundary layer is approached. 
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FIGURE 14. Pressure us. time at the centre-line for 
s = 0.4 and 2.4 for the profile (3a) .  

Inviscid core 

Figure 13 shows the displacement effect of the boundary layer on w in the core. It 
is seen that this effect is not significant. The maximum change in w due to the 
displacement effect of the boundary layer is at t = &r, the instant when the external 
flow velocity is maximum. This is understandable because if we assume (see Pedley 
1976) that the fluid everywhere in the tube comes to rest by the end of the cycle, so 
that each beat can be treated as an isolated event, with the velocity initially zero, it 
implies that the thickness of the boundary layer which develops at  the tube wall 
during every beat will be of the order of ( V T ) ~ ,  which (taking v = 0.038 in cgs units 
and T = 3 s) is approximately equal to 0.1 3 em, about one-tenth of the vessel diameter. 
Thus, in view of the boundary layer remaining thin during each cycle, the displace- 
ment effect is not very significant. 

As the boundary layer grows, figure 14 shows how the pressure drops with stream- 
wise distance during the accelerating phase and how the adverse pressure gradient 
changes with s during the decelerating phase. Again, the displacement effect is not 
expected to be significant as in the steady case (Singh 1974). 
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